DrJava: A lightweight pedagogic environment for Java

Eric Allen, Robert Cartwright, and Brian Stoler
Rice University
6100 Main St., MS-132
Houston, TX 77005-1892
{eallen,cork,bstoler}@rice.edu

September 7, 2001

Abstract

DrJava is a pedagogic programming environment for
Java that enables students to focus on designing pro-
grams, rather than learning how to use the environment.
The environment provides a simple interface based on a
“read-eval-print loop” that enables a programmer to de-
velop, test, and debug Java programs in an interactive,
incremental fashion. This paper gives an overview of
DrJava including its pedagogic rationale, functionality,
and implementation.

1 Introduction

Teaching object-oriented programming in Java to begin-
ning students is hard. Not only is an instructor faced
with the task of distilling challenging programming con-
cepts, he also must explain the mechanics involved in
writing, testing, and debugging Java programs. Stu-
dents can only learn so many things at a time, so the
more time they spend wrestling with the mechanics, the
less time they spend learning the concepts. To address
this issue, we have implemented a development envi-
ronment called DrJava that gently introduces students
to the mechanics of writing Java programs and lever-
ages the student’s understanding of the language itself
(which must be assimilated anyway) to provide powerful
support for developing programs.

DrJava supports a transparent programming interface
designed to minimize the “intimidation factor” that be-
ginning students experience when confronted with the
task of writing code. The transparent interface consists
of a window with two panes:

1. An interactions pane, where the student can input
Java expressions and statements and immediately see
their results.

2. A definitions pane, where the student can enter and
edit class definitions with support for brace matching,
syntax highlighting, and automatic indenting.

The two panes are linked by an integrated compiler that
compiles the classes in the definitions pane for use in
the interactions pane. Using DrJava, beginning pro-
grammers can write Java programs without confronting
issues such as text I/O, a command line interface, envi-
ronment variables like CLASSPATH, or the complexi-
ties of the projects interface supported by a commercial
Java development environment.

DrJava is a standard Java 1.3 application (a
Jar file) available on the web for downloading
at http://www.cs.rice.edu/ " javaplt/drjava. Al-
though DrJava is a new system that is still under active
development, it is already being used in introductory
Java courses at several high schools and universities in-
cluding our own institution.

2 Features that focus on the language

2.1 The Interactions Window

The interactions window provides a “read-eval-print
loop”[8] that enables the student to evaluate Java ex-
pressions and statements including statements that de-
fine new variables. For several decades, most implemen-
tations of functional programming languages like Lisp,
Scheme, and ML, have supported a read-eval-print loop
(REPL) to facilitate incremental program development.
A REPL provides a conceptually simple, yet powerful
framework for interacting with program components as
they are being developed. Such an interface enables
the programmer to quickly access the various compo-
nents of a program without recompiling it, or otherwise
modifying the program text. It is particularly helpful
in introductory programming classes because it enables
students to conduct simple experiments to determine
how language constructs behave and to determine the
results of subcomputations within a program. A REPL
interface also serves as a flexible tool for debugging and
testing programs and experimenting with new libraries.

Java is the first mainstream programming language that
is well-suited to supporting a REPL interface. The com-
pilation model for most mainstream languages makes it



difficult, if not impossible, to access elements of com-
piled code from an interactive interpreter. In such lan-
guages, supporting a REPL requires building a separate
interpreter that is completely independent of the com-
piler. All computations performed using the REPL are
executed entirely by the separate interpreter. Not only
does this implementation scheme involve implementing
the entire language twice—once with a compiler and once
with an interpreter—it also introduces a troubling con-
sistency problem. Does the interpreter implement the
same semantics as the compiler? Can it interface to
the same binary libraries as the compiler? Past expe-
rience with supplementary interpreters and fast “check-
out” compilers for compiled languages strongly suggest
the answer is “no” [1, 2, 9]. This problem is compounded
in computing environments where multiple vendors pro-
vide compilers for the language because these compilers
typically are not semantically equivalent.

Because Java dynamically loads program classes and
provides reflection facilities for inspecting and access-
ing the loaded code base, it is possible to implement a
read-eval-print loop for Java that dynamically loads and
accesses compiled class files as needed. In this way, the
consistency issues mentioned above are neatly avoided.
Class files generated by any valid Java compiler can be
loaded as necessary during interpretation.

In DrJava, we have incorporated an extension of
DynamicJaval[5], a freely available Java interpreter, to
provide fully integrated access to a read-eval-print loop
during program development. We extended Dynamic-
Java’s class loader (through subclassing) to allow the
class definitions in the definitions pane of DrJava to be
reloaded each time that they are compiled. The default
class loader for Java only allows classes to be loaded
once.

Testing and debugging The interactions window of
DrJava also provides a simple, yet powerful vehicle for
testing and debugging programs. Using the REPL, a
programmer can individually test program methods by
embedding test methods in the program and invoking
them from the REPL as alternate entry points. This
approach to testing is far more flexible than the usual
practice of including a main method in each class.

When testing reveals a bug, a REPL is often a bet-
ter tool for program debugging than a conventional de-
bugger. Although conventional debuggers allow a pro-
grammer to add breakpoints to a program, and to step
through its execution, they do not allow the program-
mer to interactively start execution with any method
invocation. In the conventional batch programming
model, selecting a new entry point for program execu-
tion is a cumbersome process that involves (i) modifying
the main method of the program (or class in the case

of Java), (ii) recompiling the program, (iii) re-executing
the program from the command line, and (iv) restor-
ing the main method of the program back to its “nor-
mal” configuration. This task is sufficiently awkward
and time consuming that programmers avoid doing it,
even when it may be the quickest way to diagnose a par-
ticular bug! With the REPL, a programmer can start
execution with any method call he likes, without recom-
pilation.

A REPL is a particularly good debugging tool for be-
ginning programmers because it does not require them
to learn the mechanics of using a debugger such as as
how to set and unset breakpoints, how to dump the
stack, and how to query the value of variables. With
a REPL, the same interface is used to run, test, and
debug programs.

For more advanced programmers, debuggers are useful
tools that complement the capabilities of the REPL. For
this reason, we are implementing a conventional debug-
ger for DrJava, as explained in more detail later.

Library exploration The interactions window also
provides an efficient means for exploring new APT’s.
Students can learn the essential features of complex
libraries much more quickly if they can conveniently
conduct simple experiments. This mode of learning is
particularly effective for graphical libraries like Swing.
With the read-eval-print loop, students are able to inter-
actively create new JFrames and JPanels, display them,
and watch their content change as they add new com-
ponents. This immediate feedback can help students
learn how to construct and lay out GUI components
much more efficiently.

2.2 The Editor

Since beginning students make many syntactic mistakes
and have trouble diagnosing them, DrJava is designed
to accurately detect basic syntactic errors as soon as
possible. Like many other development environments,
we support automatic indentation and keyword high-
lighting. In addition, we support fast, yet fully cor-
rect matching parenthesis and brace highlighting and
the coloring of comments and quotations. Correct-
ness is essential to our goal of providing functional-
ity with minimal complexity, since incorrect behavior
forces the user to focus on the idiosyncrasies of the
tool, learning precisely when it cannot be trusted. Un-
fortunately, fully correct parenthesis/brace matching
and comment/quotation highlighting is not supported
in most development environments for Java.

As a demonstration of how DrJava performs brace
matching, assume that definitions pane contains the fol-
lowing program text



public class C {
}

where the two braces shown match. If the user com-
ments out the closing brace, DrJava immediately finds
the new closing brace. Most development environments
completely or partially ignore the impact of comment
blocks on brace matching.

Next, consider a definitions pane containing the follow-
ing program text:

/*
public class C {...}
*/

If the user deletes the first slash, DrJava immediately
recognizes that the definition of class C is visible pro-
gram text and highlights it accordingly. Again, most de-
velopment environments will not change the highlight-
ing of a line until that line is actually edited.

DrJava immediately updates (at the granularity of every
keystroke) the highlighting of commented and quoted
sections of the code, shielding students from subsequent
surprises when they compile their code.

2.3 The Integrated Compiler

For the sake of simplicity, a Java compiler is bundled
with DrJava. The compiler is integrated with the source
editor, allowing the student to see the locations of com-
piler errors in their source simply by clicking on them.
This prevents the student from having to interact with
the compiler as a separate entity and manually move to
locations of compiler errors in the source code.

3 Using Drlava

To see how DrJava can be used to develop a new Java
program, let’s work through a simple example. Sup-
pose we want to write a small class representing an im-
mutable list of ints. We could do this by typing the
following code into the definitions pane:

public abstract class List {

public static final List EMPTY = new Empty(Q);

public List prepend(int i) {
return new NonEmpty(i, this);

}

public String toString() {
return "[" + this.toStringHelp() + "1";
}

abstract String toStringHelp();
}

class Empty extends List {

String toStringHelp() { return " "; }

class NonEmpty extends List {

int first;
List rest;

NonEmpty(int f, List r) {
first = f;
rest = r;

}
int first() { return first; }
List rest() { return rest; }

String toStringHelp() {
return " " + first + rest.toStringHelp();

}

After the user defines this program (using the com-
piler errors window to uncover any syntax or type errors
along the way) he can use the interactions window to
examine its functionality, as shown in the screen shot
below:



File Edit Help Listjava | Save Compile

public abstract class List {
public static final List EMPTY = new Empty():
public List prepend{int i) !
returh new NonEwmpty{i, this);
¥
public 3tring toltring() {
return “[" + this.toStringHelpd) + "]7:
¥
abstract String toiftringHelpi):
}

class Enpry extends List |
String toStringHelp() { return " ": 1

¥

class NonEmpty extends List |

int first:

List rest:

onEnpty{int £, List r) {
first = £;
rest = r:

}

int first{) { return first; }

List rest() { return rest; } |

Welcome to Driava.
List list0 = List.EMPTY:
listn

[1]
List listl = listO.prependil);
listl

[1]1]
List listZ = listl.prepend(Z):
listz

[21]

In this way, the programmer can call various methods
in the program with a variety of inputs, without ever
having to recompile the code. This functionality has
tremendous advantages for beginning students. Stu-
dents can interact with their Java code without ever
leaving the environment, allowing them to concentrate
on program design instead of manipulating a variety of
tools with inconsistent interfaces. In fact, through the
use of the read-eval-print loop, student programs can
accept input and display results without the students
having to use explicit I/O or GUI facilities!

4 Implementing DrJava

Paul Graunke, a Rice graduate student, developed an
early prototype of DrJava with a REPL based on in-
cremental compilation. We abandoned that implemen-
tation because the response time of the REPL was too
slow. During the summer of 2001, the authors wrote
the current version of DrJava with the help of two un-

dergraduates and one graduate of the class of 2000. The
rapid development of a production quality system was
made possible through the use of the Extreme Program-
ming methodology. The bulk of the programming was
done in pairs, and significant attention was paid to thor-
ough unit testing of the code using the JUnit tool[4]. In
fact, of the approximately 16,000 lines of code compris-
ing the current release (excluding DynamicJava), 38%
of the code consists of unit tests. We have found this
base of unit tests extremely useful as a safety net in ex-
tending the existing code base. It has also served as a
form of documentation: when reading over a block of
code written by another developer, it is useful to refer
to the unit tests he wrote for that code to see how he
intends it to be used. The unit tests are also an in-
tegral part of our release process: No changes can be
committed to the repository unless all unit tests pass.

In addition to the use of ubiquitous unit testing, we
started using DrJava to develop DrJava as soon as the
implementation reached the “alpha” test stage. As a
result, we have been able to discover a few of the bugs
that escaped past the unit tests. When a new bug is
found in this way, a new unit test is added to check for
the erroneous behavior, and the program is fixed to pass
this new test.

5 Related Work

In developing DrJava, we were influenced by two re-
lated streams of work on pedagogic programming envi-
ronments: DrScheme[3]| and BlueJ[7].

5.1 DrScheme

DrScheme is an integrated development environment for
Scheme with a transparent programming interface sim-
ilar to DrJava. It includes a REPL, multiple language
levels, a source editor, a static analyzer for Scheme pro-
grams, and a “stepper” that shows the incremental steps
involved in evaluating an expression. DrScheme has
been used in the beginning programming courses at Rice
University and has served as a model for DrJava.

5.2 Bluel

BluelJ is a research project at Monash University that
provides an integrated Java environment for teaching
beginning students[7]. BlueJ supports the interactive
development of programs using UML diagrams. Bluel
also provides a GUI interface for creating instances of
classes and calling methods on them. While DrJava and
BlueJ both emphasize interactive software development,
DrJava focuses on supporting a single medium for de-
scribing programs, namely program text. In contrast,
BlueJ describes programs using both UML diagrams
and text which makes the environment more complex.



To use Bluel, a student must learn both Java and the
protocols for using the BlueJ graphical programming
interface. Furthermore, since developing programs in
the BlueJ environment does not scale to large systems,
students eventually must abandon BlueJ and learn how
to manipulate Java program text. BlueJ’s editor does
not provide brace matching, and it does not consistently
update the highlighting of comments and quotations.

6 Directions for Future Extension

The authors, along with several undergraduate stu-
dents, are actively working on extending DrJava (i) to
provide even more assistance to beginning programmers
and (ii) to provide the tools and facilities required to
support programming in the large.

To help beginners, we plan to implement a hierarchy
of sublanguages of Java (akin to DrScheme’s language
levels) to include progressively more features of the lan-
guage. Language levels shield students from the full
complexity of the language while still allowing them to
focus on learning to write programs. This approach to
reducing the complexity of introductory programming
stands in sharp contrast to alternatives that rely on
tools that hide program text behind graphical notation
such as UML diagrams and produce code stubs that
students cannot modify and may not understand. Lan-
guage levels also may enable the development environ-
ment to perform more precise static checking. Within a
sublanguage of Java (such as Java with immutable ob-
jects), important invariants may hold that fail in general
for full Java. The environment can leverage these con-
straints to perform more helpful and descriptive syntax
checking, as well as context-sensitive checking such as
efficient null-pointer analysis and static verification of
casting operations.

To support programming in the large, we have begun
work on building a conventional debugger in DrJava,
using the Java Platform Debugger Architecture, and
integrating it with the environment. We also plan to
integrate support for unit testing, allowing the user to
pop to the locations of unit test failures in a manner
similar to that currently provided for compilation er-
rors.

7 Conclusion

By leveraging the student’s understanding of the Java
language, DrJava provides a simple yet powerful en-
vironment for developing Java programs. Since Dr-
Java has been developed through the use of “extreme
programming” methodology, it is unusually robust and
flexible—particularly for a software system developed
primarily by students. During the coming year, we an-
ticipate building on this robust base to provide even

more support for beginning programmers and to add
the facilities required to support programming in the
large.

8 Acknowledgements

The authors would like to thank undergraduate students
Jonathan Bannet, Ben Vernot, and graduating senior
Mike Yantosca for their help as summer interns on the
DrJava project.

References

[1] R. Conway, T. Wilcox. Design and Implementation
of a Diagnostic Compiler for PL/I. In Communica-
tions of ACM, 16 (3), March 1973, 169-179.

[2] P. Cress, P. Dirksen, J. Graham. Fortran IV With
WATFOR and WATFIV. Prentice Hall, Englewood
Cliffs, New Jersey, 1970.

[3] R. Findler, C. Flanagan, M. Flatt, S. Krishna-
murthi, M. Felleisen. DrScheme: A pedagogic
programming environment for Scheme. In Inter-
national Symposium on Programming Languages:
Implementations, Logics, and Programs, 1997, 369-
388.

[4] E. Gamma and K. Beck. JUnit. At
http://www.junit.org.
[5] S. Hillion. DynamicJava. At

http://koala.ilog.fr /djava.

[6] E.Roberts. An Overview of MiniJava. In Technical
Symposium on Computer Science Education, 2001,
1-5.

[7] J. Rosenberg and M. Kolling. Bluel. At
http://www.bluej.org.

[8] Erik Sandewall. Programming in an interactive en-
vironment: the “Lisp” experience. In Computing
Surveys, 10(1), March 19781, 35-71.

[9] P. Shantz, R.German, J.Mitchell, R. Shirley, C.
Zarnke. WATFOR-The University of Waterloo
FORTRAN IV compiler. In Communications of the
ACM 10 (1), January, 1967, 41-44.

[10] W. Teitelman, L. Masinter. The Interlisp program-
ming environment. In Computer 14 (4), March
1981, 25-34.



